Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy.

نویسندگان

  • Charles O Noble
  • Michal T Krauze
  • Daryl C Drummond
  • Yoji Yamashita
  • Ryuta Saito
  • Mitchel S Berger
  • Dmitri B Kirpotin
  • Krystof S Bankiewicz
  • John W Park
چکیده

We hypothesized that combining convection-enhanced delivery (CED) with a novel, highly stable nanoparticle/liposome containing CPT-11 (nanoliposomal CPT-11) would provide a dual drug delivery strategy for brain tumor treatment. Following CED in rat brains, tissue retention of nanoliposomal CPT-11 was greatly prolonged, with >20% injected dose remaining at 12 days for all doses. Tissue residence was dose dependent, with doses of 60 microg (3 mg/mL), 0.8 mg (40 mg/mL), and 1.6 mg (80 mg/mL) resulting in tissue half-life (t(1/2)) of 6.7, 10.7, and 19.7 days, respectively. In contrast, CED of free CPT-11 resulted in rapid drug clearance (tissue t(1/2) = 0.3 day). At equivalent CED doses, nanoliposomal CPT-11 increased area under the time-concentration curve by 25-fold and tissue t(1/2) by 22-fold over free CPT-11; CED in intracranial U87 glioma xenografts showed even longer tumor retention (tissue t(1/2) = 43 days). Plasma levels were undetectable following CED of nanoliposomal CPT-11. Importantly, prolonged exposure to nanoliposomal CPT-11 resulted in no measurable central nervous system (CNS) toxicity at any dose tested (0.06-1.6 mg/rat), whereas CED of free CPT-11 induced severe CNS toxicity at 0.4 mg/rat. In the intracranial U87 glioma xenograft model, a single CED infusion of nanoliposomal CPT-11 at 1.6 mg resulted in significantly improved median survival (>100 days) compared with CED of control liposomes (19.5 days; P = 4.9 x 10(-5)) or free drug (28.5 days; P = 0.011). We conclude that CED of nanoliposomal CPT-11 greatly prolonged tissue residence while also substantially reducing toxicity, resulting in a highly effective treatment strategy in preclinical brain tumor models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy.

Liposome formulations of camptothecins have been actively pursued because of the potential for significant pharmacologic advantages from successful drug delivery of this important class of anticancer drugs. We describe nanoliposomal CPT-11, a novel nanoparticle/liposome construct containing CPT-11 (irinotecan) with unprecedented drug loading efficiency and in vivo drug retention. Using a modifi...

متن کامل

Comparing routes of delivery for nanoliposomal irinotecan shows superior anti-tumor activity of local administration in treating intracranial glioblastoma xenografts.

BACKGROUND Liposomal drug packaging is well established as an effective means for increasing drug half-life, sustaining drug activity, and increasing drug efficacy, whether administered locally or distally to the site of disease. However, information regarding the relative effectiveness of peripheral (distal) versus local administration of liposomal therapeutics is limited. This issue is of imp...

متن کامل

Canine spontaneous glioma: a translational model system for convection-enhanced delivery.

Canine spontaneous intracranial tumors bear striking similarities to their human tumor counterparts and have the potential to provide a large animal model system for more realistic validation of novel therapies typically developed in small rodent models. We used spontaneously occurring canine gliomas to investigate the use of convection-enhanced delivery (CED) of liposomal nanoparticles, contai...

متن کامل

Convection-enhanced delivery of nanocarriers for the treatment of brain tumors.

Primary brain tumors have a significant infiltrative capacity as their reappearance after resection usually occurs within 2cm of the tumor margin. Local delivery method such as Convection-Enhanced Delivery (CED) has been introduced to avoid this recurrence by delivering active molecules via positive-pressure methods. For an efficient infusion, the distribution volume of the drug has to be optim...

متن کامل

Convection-enhanced drug delivery: increased efficacy and magnetic resonance image monitoring.

Convection-enhanced drug delivery (CED) is a novel approach to directly deliver drugs into brain tissue and brain tumors. It is based on delivering a continuous infusion of drugs via intracranial catheters, enabling convective distribution of high drug concentrations over large volumes of the target tissue while avoiding systemic toxicity. Efficient formation of convection depends on various ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 66 5  شماره 

صفحات  -

تاریخ انتشار 2006